
James Witts - S14139866
Ahmed Ismail - S15120305

Cheng Jiacheng - S16153760

CMP6203 - Cloud Computing: AWS
Report

This report describes six main stages in a project using Amazon Web Services (AWS) from
initial development on a local machine through deployment, testing and concluding with
some remarks for further development

STAGE ONE: Local development
To start with we developed our application on a windows 8 laptop using XAMPP Lamp stack
from Bitnami that uses a MySQL database running on port 3306. The application is a php
web app that allows a user to insert data into one of three different tables; users, bookmarks
or tags. The default engine for the MySQL database is MyISAM. In the future it might be
better to changes this to Innodb since the “tags” table we created uses a foreign key
dependent on user data, which will be replaced in Innodb by a unique identifier when running
from an Amazon RDS MySQL database.

STAGE TWO: Deployment - North California region
When moving the XAMPP stack to Amazon we first prepared all the resources we needed by
using a CloudFormation stack template which we made in CloudFormation Designer by
merging two existing templates together from two different sources. One came from a git
repository and the other a sample template provided by CloudFormation Designer. When
merging the two together the workflow was mostly trial and error and we eventually got a
stack that created most of the resources we needed.

A schematic overview of the full design in given in Appendix I.

The following diagram shows the output from creating a stack using the Cloudformation tool:

The following modifications were made after cloudformation stack completion from the AWS
console:

Security
• Added the inbound rule on webservers from port 3306 for the DBEC2SecurityGroup
• Modified DBInstance to the DBEC2SecurityGroup and removed the default one.
• DBEC2SecurityGroup ingress rule to allow all trafic from webservers. (to get it to

work)

S3 storage
• Created an s3 bucket in the current region
• Moved the "bcu.jpg" into the S3 bucket.
• Gave read-only permissions for the public for the "bcu.jpg" image.

Illustration 1: Screenshot of S3 Storage Interface

MySQL scripting using Workbench
• Created a connection to the database
• Created the tables with the "cake_bookmarks_createTables.sql" file.

Illustration 2: Screenshot of MySQL Workbench Interface

Configured Webserver using WinSCP and Putty
This procedure was carried out for both ubuntu EC2 instances that were created:

• Connect via ssh client and execute the following
sudo su
apt-get update && apt-get upgrade -y
usermod -a -G root ubuntu
chown -R ubuntu:ubuntu /var/www/html
chmod -R 755 /var/www/html
a2enmod rewrite
sudo nano /etc/apache2/sites-available/000-default.conf

• Added to webserver configuration file:

<VirtualHost *:80>
<Directory /var/www/html>

 Options Indexes FollowSymLinks MultiViews
 AllowOverride All
 Require all granted

</Directory>
. . .

</VirtualHost>

• Modified document root
/var/www/html/bcu_bookmarker
<<Ctrl+o>> then <<Ctrl+x>> to save the changes.

• sudo nano /var/www/html/.htaccess
RewriteEngine on
<<Ctrl+o>> then <<Ctrl+x>> to save the changes.

 systemctl restart apache2

• Dragged and dropped "bcu_bookmarker" client application into /var/www/html

folder. (Long wait)

Illustration 3: Screenshot of Web App in error reporting mode

Illustration 4: More errors reported during debugging

In app config

• We set the debug variable to false to hide the errors

• Entered the db host as the rds endpoint.
◦ amtzcbah63q2ln.ccot9al0nlqj.us-west-1.rds.amazonaws.com

• Modified security salt variable

• In the home.ctp we linked to s3 bucket in home.ctp img tag src:
◦

https://s3-us-west-1.amazonaws.com/awscloudcompbucketv2/bcu.
jpg

This completed the initial deployment of the app.

The next step was to populate database with test data:

https://s3-us-west-1.amazonaws.com/awscloudcompbucketv2/bcu.jpg
https://s3-us-west-1.amazonaws.com/awscloudcompbucketv2/bcu.jpg

Illustration 5: Screenshot showing test data has been added

STAGE THREE: Load balancing tests (North California)
We have two Ubuntu EC2 instances on the right side of the screen running in N.Cali region,
amazon zone 1b and 1c. Both of them can be accessed from the load balancer on the left
side of the screen.

Stopping 1b gives us this:

This shows us that the load balancer is still able to access the app through ubuntu EC2
instance in AZ 1c.

Restarting the instance gives this:

(Instances can’t be recovered once stopped.)

The additional features we have included like the autoscaling group almost fixes this
problem as it “defaults” to two running instances and boots another ubuntu EC2 instance
ready for app deployment:

STAGE FOUR: Security practices (Oregon region)
N.B. All the current setups and tests done from the VPC in Oregon could be continued over
into the VPC in North California so are still valid.

IAM service
One of the security features that were used in this project is the creation of an IAM service.
The IAM service is one of the services within AWS. With IAM it’s possible to manage users
and their security credentials like their passwords, permissions and access keys, also it
controls which AWS service the users account can use.

When a user creates an AWS account, the account has access to the AWS management
console, it’s possible to create access keys which contain an access ID and a secret access
key. This is used to make programmatic calls to AWS using different features like the
command line interface (CLI).

The IAM allows the creation of individual users with that AWS account, they each get their
own username, access keys and password. Each account is tied to a URL link which allows
the user to access their account. All the activities that are done within these account are
billed to the main account. There are 4 access levels which a user can have which are list,
read, write and permissions management. The list and read allows the user to just view and
list different services like for example on S3 services the user with these access levels would
only be able to view and list buckets. With the write access the user can delete or add
objects in the buckets and with the permission management they have full access to all the
services and its features such as manage bucket policies on S3.

As a best practice 3 different user accounts where created within 1 group for each of the
team members, including the main accounts holder. In this case this was done on James’s
AWS account. What was done was James’s user account had all the access levels since
he’s the administrator, whereas Ahmed’s and cheng’s account has the list, read and write
access which limited.

Figure 1: the IAM group with all the users contained.

Figure 2: permissions included in the group
Another feature with the IAM service was an IAM password policy allowing the user to
change their password. What was done was when one user wants to change their password
they would need to create a strong password. The screenshot below shows what policies
was added.

Figure 3: password policy.

IAM roles
When an EC2 instance is running applications that are run on it need certain IDs to make
use of the AWS services they need. A role is basically a unit with its own set of permissions.
Using IAM roles allows the EC2 instance to temporarily gain these credentials to allow them
to use the services they need. An example can be application code running on an EC2
instance that needs to perform actions on AWS resources. IAM roles distribute keys that are
valid for a short time, thus ensuring they are a more secure way to grant access. Below is a
screen shot of the roles that are included in the EC2 instances within the account.

Figure 4: IAM Roles

Network ACLs
Network access control list (ACL) is an optional layer of security for the VPC which

essentially acts as a firewall for controlling traffic in and out of one or more subnets. As a
best practice the network ACLs that were created have the same outbound rules as the

security groups that were created. The security groups have more specific inbound rules.
The resemblance in the rules add extra layer of security to the VPC. Each subnet is related

to a network ACL A network ACL has a numbered list of rules are valued in order from lowest
to highest, to control if traffic is allowed in or out of any subnet linked with the network ACL.

The highest number that can used for a rule is 32766.

Figure 5: ACLs with inbound and outbound rules

Security groups
A security groups actions is being a simulated firewall that controls the traffic for one or more
instances. When an instance is launched, it is good practice to add one or more security
groups to that instance. adding rules to each security group allows traffic to or from its
related instances. The rules of a security group control the inbound traffic that's allowed to
get to the instances which link to the security group and the outbound traffic that's allowed to
leave them. As a best secrutiy practice these security groups implemment the least
premissive rules.

Figure 6: security groups with inbound and outbound rules

Additional options
There are other security options that can be added, one such security element is a multi-
factor authentication. For extra security, mufti-factor authentication can be enabled for the
users who have all the access levels as they are allowed to access delicate resources. The
user can obtain a device that would generate a onetime unique passcode, they would then
need to sign in with both their user account password and this one time passcode.

Demonstrates high availability at different levels

Instances:
There were 2 instances created and with high availability in mind, these instances have
different availability zones. By having them in different availability zones it improves the fault
tolerance in the application. If on availability zone is not working because of an outage, all
traffic is routed to the other availability zone.

Figure 1: instances with different availability zones.

Auto scaling groups - transferred to North California.
This contains the EC2 instances that have a link between them, like in our example where
the 2 instances that we created, one for the web application and another for the PHP
application.

What the auto scaling group does it launches the necessary number of instances to meet the
requirements we need which is for it to run a web application that can edit a RDS database.
For our case one was enough. The auto scaling group keeps this one instance running and
keeps tabs on that instance like doing health check, if that specific instance fails the auto
scaling group terminates that instance in the group and launches the other instance that is
available so that it switches it out.

Figure 3: auto scaling for 2 different instances.

STAGE FIVE: Monitoring Instances Using CloudWatch
With CloudWatch it’s possible to monitor the instances within the AWS account. The data
that is collected with is in raw form is processed from EC2 instance and converted into
readable, real-time metrics. These data help in having advanced perception on how the web
application or the different services that are running within the instance is performing.
By default, Amazon EC2 sends metric data to CloudWatch in 5-minute periods. Our group
configured this option to send data in 1 minute periods. This allows more detailed monitoring
on the instances created.

Figure 1: metric data refresh intervals

When monitoring the instances it’s important to monitor the basic system-level metrics which
are the core setup of the instances to make user they are healthy. Other things to consider
tracking are the resources being used. For our project we covered 3 metrics types.
CPU
There are several CPU configurations within ECS instances, tracking the CPU usage allows
us to know that the instance is appropriately sized for the job that it’s configured for.
5 different metrics fall under this category which are:
 1. CPU Utilization
 2. CPU Credit Balance
 3. CPU Credit Usage
 4. CPU Surplus Credits Charged
 5. CPU Surplus Credit Balance
The table below shows the graphs for these metrics. With description on what these metrics
are and screenshots of the graphs corresponding with them. There will a table for each
instance. The graphs show the usage between 2018/05/14 at 00:00:00 and 2018/05/15 at
10:54:38

Table 1: Ubuntu 2

Test Screenshot of graph

CPUUtilization:
Percentage of allocated EC2 compute units
that are currently in use on the instance.

CPUCreditBalance:
Number of CPU credits that an instance has
accumulated.

CPUCreditUsage
Number of CPU credits consumed.

CPUSurplusCreditsCharged
Number of surplus credits not offset by
earned CPU credits and that will incur
charges

CPUSurplusCreditBalance
Number of credits consumed after CPU
credit balance has reached 0.

Table 2: Amazon Linux

Test Screenshot of graph

CPUUtilization:
Percentage of allocated EC2 compute units
that are currently in use on the instance.

CPUCreditBalance:
Number of CPU credits that an instance has
accumulated.

CPUCreditUsage
Number of CPU credits consumed.

CPUSurplusCreditsCharged
Number of surplus credits not offset by
earned CPU credits and that will incur
charges

CPUSurplusCreditBalance
Number of credits consumed after CPU
credit balance has reached 0.

Network
The main reason behind the importance of network metrics are their importance for EC2
since it depend on solid network connections, which might be spread across various
availability zones.
4 different metrics fall under this category which are:
 1. Network packs in
 2. Network packs out
 3. Network in
 4. Network out
The table below shows the graphs for these metrics. With description on what these metrics
are and screenshots of the graphs corresponding with them. There will a table for each
instance. The graphs show the usage between 2018/05/14 at 00:00:00 and 2018/05/15 at
10:54:38
Table 1: Ubuntu 2

Test

NetworkPacketsIn/NetworkPacketsOut:
Number of packets received/sent out on all
network interfaces by the instance. Only
available at five-minute resolution.

NetworkIn
NetworkOut
Number of bytes received/sent out on all
network interfaces by the instance.

Table 2: Amazon Linux

Test

NetworkPacketsIn/NetworkPacketsOut:
Number of packets received/sent out on all
network interfaces by the instance. Only
available at five-minute resolution.

NetworkIn
NetworkOut
Number of bytes received/sent out on all
network interfaces by the instance.

Status checks

These checks are simply what is used to check the status of the instance and the systems
within it. 2 different metrics fall under this category which are:
 1. Status Check Failed_System
 2. Status Check Failed_Instance
The table below shows the graphs for these metrics. With description on what these metrics
are and screenshots of the graphs corresponding with them. There will a table for each
instance. The graphs show the usage between 2018/05/14 at 00:00:00 and 2018/05/15 at
10:54:38

Table 1: Ubuntu 2

StatusCheckFailed_System
StatusCheckFailed_Instance
Returns 1 if the instance has failed EC2's
system/instance status check.

Table 2: Amazon Linux

StatusCheckFailed_System
StatusCheckFailed_Instance
Returns 1 if the instance has failed EC2's
system/instance status check.

Cloud trail
This is basically an API (application program interface) which creates log files and sends it to
the S3 bucket for storage. They provide an audit trail of changes to the AWS instances and
the interactions that happen within them.

We have used a third party website called Loogly to create graphs that represent different
findings from these log files. What we did was we gave the site the S3 bucket name and an
IAM user’s access key ID and secret access key. With that user having the right permissions
which are list buckets and het objects we managed to get all the S3 data into the site.

The graphs below show different charts and graphs that we were able to pull from the
CloudTrail

Top AWS CloudTrail Event Sources in the Last Day.

This chart shows which of the AWS services were modified by the admin. This can be used
to check for unexpected activity

AWS CloudTrail Top Users in the Last Day

This chart shows the activities the users within the AWS account. Unknown usernames can
show a security breach

AWS CloudTrail Top Error Messages in the Last Day

This chart shows all the error messages that have come up from all sources.

Cost breakdown for our current setup:
If one person use data 50MB every month, 100 user will use 5GB every month.

5GB data translate will need $32.39every month.
10 thousand user will be 500GB/month

About 500GB/mouth, it will be use $133.09

At last, if one million user, the data transfer is 50 TB per month

That Estimate of monthly bill is $10256.69

STAGE SIX: Remarks about project improvements

AWS systems Manager
Systems manager is Powerful tools. Systems Manager provides a unified user interface that
lets you view the operational data of multiple AWS services and automate operational tasks
on AWS resources. With Systems Manager, you can group resources (for example, Amazon
EC2 instances, Amazon S3 buckets, or Amazon RDS instances) by application, view
operational data for monitoring and troubleshooting, and act on resource groups. Systems
Manager simplifies resource and application management, reduces the time required to
detect and resolve operational problems, and enables you to run and manage your
infrastructure on a large scale with ease and security.(Mathew, 2014a)

AWS Config
AWS Config is a service that evaluates, reviews, and evaluates the configuration of AWS
resources. Config continuously monitors and records AWS resource configurations and
supports automatic configuration of records based on configuration requirements. And you
can view the relationship between configuration changes and AWS resources, drill down into
detailed resource configuration history, and determine if the configuration meets the
configuration requirements specified in the internal guide. Absconding basically has the
following features, configurable and customizable rules, configuration history of AWS

resources, software configuration history, configuration snapshots, resource relationship
tracking, cloud management control panel, partner solution ecosystem. As a result,
compliance audits, security analysis, change management, and operational troubleshooting
will simplify these features.(Mathew, 2014b)

References
Ref - AWS CloudFormation [WWW Document], n.d. URL
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-
reference-ref.html (accessed 5.16.18).

“Ref - AWS CloudFormation.” Accessed May 16, 2018.
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-
reference-ref.html.

Mathew, S. (2014). Overview of Amazon Web Services. [online] Ajsnetworking.com.
Available at: http://www.ajsnetworking.com/wp-content/uploads/2015/01/aws-overview.pdf
[Accessed 16 May 2018].

Docs.aws.amazon.com. (2018). Designing for High Availability - Exchange Server on AWS.
[online] Available at: https://docs.aws.amazon.com/quickstart/latest/exchange/design-ha.html
[Accessed 14 May 2018].

Docs.aws.amazon.com. (2018). Creating a Trail - AWS CloudTrail. [online] Available at:
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-
the-console-first-time.html?icmpid=docs_cloudtrail_console [Accessed 14 May 2018].

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-ref.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-ref.html

Appendix I: Cloud Formation Design Diagram

